English

CIn - Centro de Informática UFPE




Eventos Relacionados

Defesa de Dissertação de Mestrado Nº1.684: "A Bayesian Framework for Object Recognition under Severe Occlusion"

O aluno Fidel Alejandro Guerrero Peña irá defender sua pesquisa no dia 22 de fevereiro às 14h, na sala D218 Início: 22/02/2017 às 14:00 Término: 22/02/2017 às 00:00 Local: Sala D218

Pós-Graduação em Ciência da Computação – UFPE
Defesa de Dissertação de Mestrado Nº 1.684

Aluno: Fidel Alejandro Guerrero Peña
Orientador: Prof. Germano Crispim Vasconcelos
Título: A Bayesian Framework for Object Recognition under Severe Occlusion
Data: 22/02/2017
Hora/Local: 14h – Centro de Informática – Sala D218
Banca Examinadora:
Prof. Tsang Ing Ren  (Centro de Informática/UFPE
Prof. Alexandre Magno Maciel - (Escola Politécnica/UPE)
Prof. Germano Crispim Vasconcelos   (Centro de Informática/UFPE

ABSTRACT:

Shape classification has multiple applications. In real scenes, shapes may contain severe occlusions, hardening the identification of objects. In this work, a bayesian framework for object recognition under severe and varied conditions of occlusion is proposed. The proposed framework is capable of performing three main steps in object recognition: representation of parts, retrieval of the most probable objects and hypotheses validation for final object identification.

Occlusion is dealt with separating shapes into parts through high curvature points, then tangent angle signature is found for each part and continuous wavelet transform is calculated for each signature in order to reduce noise. Next, the best matching object is retrieved for each part using Pearson's correlation coefficient as query prior, indicating the similarity between the part representation and of the most probable object in the database. For each probable class, an ensemble of Hidden Markov Model (HMM) is created through training with the one-class approach. A sort of search space retrieval is created using class posterior probability given by the ensemble. For occlusion likelihood, an area term that measure visual consistency between retrieved object and occlusion is proposed. For hypotheses validation, a area constraint is set to enhance recognition performance eliminating duplicated hypotheses.

Experiments were carried out employing several real world images and synthetical generated occluded objects datasets using shapes of CMU_KO and MPEG-7 databases. The MPEG-7 dataset contains 1500 test shape instances with different scenarios of object occlusion with varied levels of object occlusion, different number of object classes in the problem, and different number of objects in the occlusion. For real images experimentation the CMU_KO challenge set contains 8 single view object classes with 100 occluded objects per class for testing and 1 non occluded object per class for training. Results showed the method not only was capable of identifying highly occluded shapes (60%-80% overlapping) but also present several advantages over previous methods. The minimum F-Measure obtained in MPEG-7 experiments was 0.67, 0.93 and 0.92, respectively and minimum AUROC of 0.87 for recognition in CMU_KO dataset, a very promising result due to complexity of the problem.

Different amount of noise and varied amount of search space retrieval visited were also tested to measure framework robustness. Results provided an insight on capabilities and limitations of the method, demonstrating the use of HMMs for sorting search space retrieval improved efficiency over typical unsorted version. Also, wavelet filtering consistently outperformed the unfiltered and sampling noise reduction versions under high amount of noise.

Kewords: Severe occlusion, Hidden Markov Model, Wavelet Transform, Object Recognition

RESUMO:

A classificação da forma tem múltiplas aplicações. Em cenas reais, as formas podem conter oclusões severas, fazendo difícil a identificação de objetos. Neste trabalho, propõe-se uma abordagem bayesiana para o reconhecimento de objetos com oclusão severa e em condições variadas. O esquema proposto é capaz de realizar três etapas principais no reconhecimento de objetos: representação das partes, recuperação dos objetos mais prováveis e a validação de hipóteses para a identificação final dos objetos.

A oclusão é tratada separando as formas em partes através de pontos de alta curvatura, então a assinatura do ângulo tangente é encontrada para cada parte e a transformada contínua de wavelet é calculada para cada assinatura reduzindo o ruído. Em seguida, o objeto mais semelhante é recuperado para cada parte usando o coeficiente de correlação de Pearson como prior da consulta, indicando a similaridade entre a representação da parte e o objeto mais provável no banco de dados. Para cada classe provável, um sistema de múltiplos classificadores com Modelos Escondido de Markov (HMM) é criado através de treinamento com a abordagem de uma classe. Um ordenamento do espaço de busca é criada usando a probabilidade a posterior da classe dada pelos classificadores. Como verosimilhança de oclusão, é proposto um termo de área que mede a consistência visual entre o objeto recuperado e a oclusão. Para a validação de hipóteses, uma restrição de área é definida para melhorar o desempenho do reconhecimento eliminando hipóteses duplicadas.

Os experimentos foram realizados utilizando várias imagens do mundo real e conjuntos de dados de objetos oclusos gerados de forma sintética usando formas dos bancos de dados CMU_KO e MPEG-7. O conjunto de dados MPEG-7 contém 1500 instâncias de formas de teste com diferentes cenários de oclusão por exemplo, com vários níveis de oclusões de objetos, número diferente de classes de objeto no problema e diferentes números de objetos na oclusão. Para a experimentação de imagens reais, o desafiante conjunto CMU_KO contém 8 classes de objeto na mesma perspectiva com 100 objetos ocluídos por classe para teste e 1 objeto não ocluso por classe para treinamento. Os resultados mostraram que o método não só foi capaz de identificar formas altamente ocluídas (60% - 80% de sobreposição), mas também apresentar várias vantagens em relação aos métodos anteriores. A F-Measure mínima obtida em experimentos com MPEG-7 foi de 0.67, 0.93 e 0.92, respectivamente, e AUROC mínimo de 0.87 para o reconhecimento no conjunto de dados CMU_KO, um resultado muito promissor devido à complexidade do problema.

Diferentes quantidades de ruído e quantidade variada de espaço de busca visitado também foram testadas para medir a robustez do método. Os resultados forneceram uma visão sobre as capacidades e limitações do método, demonstrando que o uso de HMMs para ordenar o espaço de busca melhorou a eficiência sobre a versão não ordenada típica. Além disso, a filtragem com wavelets superou consistentemente as versões de redução de ruído não filtradas e de amostragem sob grande quantidade de ruído.

Palabras-chaves: Oclusão severa, Modelo Escondido de Markov, Transformada de Wavelet, Reconhecimento de Objetos
  • © Centro de Informática UFPE - Todos os direitos reservados
    Tel +55 81 2126.8430 - Cidade Universitária - 50740-560 - Recife/PE
Plano4 Consultoria Web